Noisy Wage Posting

 ${\sf Francesco\ Conti},\ {\sf Raymond\ He},\ {\sf Suryansh\ Upmanyu}$

November 1, 2024

University of Texas at Austin

Introduction

Motivation

	Random search	Directed search
No wages posted	McCall (1970), Diamond (1982),	
	Mortensen (1982), Pissarides (1985)	N\A
Wages posted	Burdett and Mortensen (1998)	Montgomery (1991),
		Moen (1997)

 $\textbf{Table 1:} \ \, \mathsf{Taxonomy} \ \, \mathsf{of} \ \, \mathsf{labor} \ \, \mathsf{search} \ \, \mathsf{models}$

Shares of wage information across the U.S.

Figure 1: Both wage posting protocols co-exist

Occupation-level wage information shares (2018 - 2020)

Figure 2: There is significant wage posting heterogeneity at the occupation level

Research Questions

- 1. Why are some **occupations** transparent about their wages and some ambiguous?
- 2. What are the equilibrium effects of pay transparency in public job postings?
 - How do wages change?
 - How do firms' profits change?

Literature review

1. Wage posting behavior:

Michelacci and Suarez (2006), Cheremukhin and Restrepo-Echavarria (2020), Flinn and Mullins (2021), Doniger (2023), Rabinovich et al. (2023) **Contribution:** First to explicitly study wage ranges offers rather than just point wage offers.

2. Pay transparency:

Cullen and Pakzad-Hurson (2023)

Contribution: First to study the welfare effects of *inter*-firm pay transparency, not *intra*-firm.

Stylized facts about wage

information

- 1. BLS Occupational Employment and Wage Statistics
- 2. Lightcast (formerly EMSI Burning Glass Technologies)

	Number	% of All
All	235,637,477	100.00%
Remove internships	232,658,048	98.74%
Remove missing information	228,515,838	96.98%
Remove postings from Craigslist	219,453,588	93.13%
Remove military & unclassified occupations	212,122,347	90.02%
Remove irrecoverable firm names	204,989,211	86.99%

Table 2: Number of vacancy postings (Jan 2018 - Dec 2023)

Fact 1: Higher skilled jobs are less transparent

	1(Has wage information)	
	(1)	(2)
(Intercept)	-0.736***	
	(0.001)	
Minimum education level required	-0.201***	-0.184***
	(0.000)	(0.001)
Minimum years experience required	-0.065***	-0.037***
	(0.000)	(0.000)
SOC 6 & NAICS 5 Fixed Effects		Yes
State & Year Fixed Effects		Yes
N	48,780,216	48,780,216
Pseudo R ²	0.016	0.173

Fact 1: Higher skilled jobs are less likely to have ANY wage information

- $\bullet \ \hat{\beta}_{\mathsf{educ}} = -0.201$
 - -ve relationship between education requirement and Pr(observing wage information)
 - Vacancies requiring Bachelors are ≈ 8.1 p.p less likely to have any wage information than vacancies requiring a high school diploma/GED (local to 0 years of experience required)
 - 14.39 p.p difference between PhDs and high school diploma/GED
- $\hat{\beta}_{\mathsf{exper}} = -0.065$
 - -ve relationship between required experience and Pr(having wage information)
 - Vacancies requiring 5 years of experience are ≈ 6.67 p.p. less likely to have any
 wage information than vacancies requiring 0 years of experience (local to a high
 school diploma/GED)
 - 12.38 p.p difference between 10 years and 0 years

Fact 1: Higher skilled jobs are less transparent

	1(Is point offer)	
	(1)	(2)
(Intercept)	-0.351***	
	(0.001)	
Minimum education level required	-0.300***	-0.155***
	(0.001)	(0.001)
Minimum years experience required	-0.101***	-0.062***
	(0.000)	(0.000)
SOC 4 & NAICS 5 Fixed Effects		Yes
State & Year Fixed Effects		Yes
N	11,557,071	11,557,070
Pseudo R^2	0.032	0.104

10

Fact 1: Higher skill jobs are less likely to advertise point-wages

- $\hat{\beta}_{\text{educ}} = -0.300$
 - -ve relationship between education requirement and Pr(wage offer is point)
 - Vacancies with any wage offer requiring Bachelors are ≈ 13.44 p.p less likely to have that wage offer be a point than vacancies requiring a high school diploma/GED (local to 0 years of experience required)
 - 23.8 p.p difference between PhDs and high school diploma/GED
- $\hat{\beta}_{\mathsf{exper}} = -0.101$
 - -ve relationship between required experience and Pr(wage offer is point)
 - Vacancies with any wage offer requiring $\bf 5$ years experience are $\approx \bf 11.5$ p.p less likely to have that wage offer be a point than vacancies requiring $\bf 0$ years experience (local to a high school diploma/GED)
 - ullet pprox 20.9 p.p difference between 10 years and 0 years

State & Year Fixed Effects

	Wage range bandwidth			
	(1)	(2)	(3)	(4)
(Intercept)	7.821***		7.757***	
	(0.006)		(0.006)	
Minimum education level required	1.500***	0.437***	2.221***	0.864***
	(0.004)	(0.004)	(0.010)	(0.011)
Minimum years experience required	0.505***	0.296***	0.490***	0.292***
	(0.001)	(0.002)	(0.001)	(0.002)
Minimum education level required ²			-0.300***	-0.175***
			(0.004)	(0.004)
SOC 6 & NAICS 5 Fixed Effects		Yes		Yes

Yes

Yes

Fact 2: Market power and transparency

- Market power measured by the Herfindahl-Hirschman Index (HHI)
 - \bullet HHI < 1,500: Competitive
 - 1,500 < HHI < 2,500: Moderately concentrated
 - HHI > 2,500: Highly concentrated
- 1 labor market for every occupation SOC-6 in every state
- HH Index for market *m* at time *t* is given by

$$HHI_{m,t} = \sum_{j=1}^{J} s_{j,m,t}^2$$

where

 $s_{j,m,t} = \frac{\text{Number of firm j's vacancy posts in market m at time t}}{\text{Total number of vacancy posts in market m at time t}},$ or firm j's market share in market m at time t.

• t in quarters

Fact 2: More concentrated labor markets are more transparent

	Has wage information	Is point offer	Mean range width	
	(1)	(2)	(3)	
HHI/100	0.768***	0.583***	-0.021***	
	(0.009)	(0.010)	(0.003)	
State Fixed Effects	Yes	Yes	Yes	
Quarter Fixed Effects	Yes	Yes	Yes	
N	55,640	55,640	55,640	
R^2	0.252	0.120	0.051	
Within-R ²	0.111	0.063	0.001	

Model

Model Preliminaries

Agents:

- 2 heterogeneous workers: Of types x_l and x_h , $x_l < x_h$, where $x_j \in \mathbb{R}_+$ is the output they produce at a firm.
- 2 homogeneous firms: risk-neutral

Actions:

- Firms: Choose w_l and w_h , where w_l , $w_h \in \mathbb{R}_+$
- Workers: Choose between Firm 1 and Firm 2 (possibly mixed strategy)

Payoffs:

- If a worker or firm is not matched, they get 0
- If matched, a worker x_i gets w
- If matched, a firm gets $x_i w$

Timeline And Beliefs

• Timeline:

- 1. Firms simultaneously decide what wages to post $\{w_l^1, w_h^1\}$ and $\{w_l^2, w_h^2\}$
- 2. Workers observe the firms' posted wages and decide which firm to apply to

• Beliefs:

- ullet Firms know that there are two types of workers, they know the values of x_l and x_h
- But they do not know the type of worker that applies to their job

Matching Function

- Both workers prefer to be employed.
- If only 1 worker applies to a firm, he gets matched automatically.
- If both workers apply to the same firm, then one of them is matched with the firm probability $\frac{1}{2}$.
- With a probability $\alpha > \frac{1}{2}$, firms can correctly assess the applicant type x_i , and offer him w_i .
- With probability 1α , the firm makes a mistake and offers applicant x_i wage w_j .

Equilibrium: Worker's Subgame

- Suppose both firms post wage ranges $\{w_l^1, w_h^1\}$ and $\{w_l^2, w_h^2\}$.
- Focus on mixed strategy Nash equilibria in workers' subgame.
- Worker type x_l has strategy $(p_l, 1 p_l)$, type x_h has strategy $(p_h, 1 p_h)$, where p_i is the probability of applying to Firm 1.
- Equilibrium condition for x_i randomizing $(i \in \{l, h\}, j \neq i)$:

$$\left[\frac{p_j}{2} + (1 - p_j)\right] \left[\alpha w_i^1 + (1 - \alpha)w_j^1\right] = \left[p_j + \frac{1 - p_j}{2}\right] \left[\alpha w_i^2 + (1 - \alpha)w_j^2\right]$$

- Worker type x_i should be indifferent between applying to firm 1 and firm 2.
- Expected wages depend on whether the other worker applies to the same firm as well.

Equilibrium: Worker's Subgame

This gives us

$$p_h = \frac{2[\alpha w_l^1 + (1 - \alpha)w_h^1] - [\alpha w_l^2 + (1 - \alpha)w_h^2]}{[\alpha w_l^1 + (1 - \alpha)w_h^1] + [\alpha w_l^2 + (1 - \alpha)w_h^2]}$$
$$p_l = \frac{2[\alpha w_h^1 + (1 - \alpha)w_l^1] - [\alpha w_h^2 + (1 - \alpha)w_l^2]}{[\alpha w_h^1 + (1 - \alpha)w_l^1] + [\alpha w_h^2 + (1 - \alpha)w_l^2]}$$

- p_i increases if Firm 1 increases either w_i^1 or w_h^1
- p_i decreases if w_i^2 or w_h^2 increases

Equilibrium: Firms' expected profits

Firm 1

$$\mathbb{E}\left[\Pi_{1}(w_{l}^{1}, w_{h}^{1}|w_{l}^{2}, w_{h}^{2})\right] = (p_{l}(1 - p_{h}))[x_{l} - \alpha w_{l}^{1} - (1 - \alpha)w_{h}^{1}]$$

$$+ ((1 - p_{l})p_{h})[x_{h} - \alpha w_{h}^{1} - (1 - \alpha)w_{l}^{1}]$$

$$+ (p_{l}p_{h})\left[\frac{1}{2}[x_{l} - \alpha w_{l}^{1} - (1 - \alpha)w_{h}^{1}] + \frac{1}{2}[x_{h} - \alpha w_{h}^{1} - (1 - \alpha)w_{l}^{1}]\right]$$

Equilibrium: Firms' expected profits

Firm 2

$$\mathbb{E}\left[\Pi_{2}(w_{l}^{2}, w_{h}^{2} | w_{l}^{1}, w_{h}^{1})\right] = ((1 - p_{l})p_{h})[x_{l} - \alpha w_{l}^{2} - (1 - \alpha)w_{h}^{2}]$$

$$+ (p_{l}(1 - p_{h}))[x_{h} - \alpha w_{h}^{2} - (1 - \alpha)w_{l}^{2}]$$

$$+ ((1 - p_{l})(1 - p_{h}))\left[\frac{1}{2}[x_{l} - \alpha w_{l}^{2} - (1 - \alpha)w_{h}^{2}] + \frac{1}{2}[x_{h} - \alpha w_{h}^{2} - (1 - \alpha)w_{l}^{2}]\right]$$

Firm 1 profits with respect to w_l^1

$$\left[\left[\left(1-\frac{p_{h}}{2}\right)\frac{1-\alpha}{D_{l}^{2}}\left(3(\alpha w_{h}^{2}+(1-\alpha)w_{l}^{2})\right)-\frac{p_{l}}{2}\frac{\alpha}{D_{h}^{2}}\left(3(\alpha w_{l}^{2}+(1-\alpha)w_{h}^{2})\right)\right]\times\left[x_{l}-\alpha w_{l}^{1}-(1-\alpha)w_{h}^{1}\right]-\alpha\left[p_{l}\left(1-\frac{p_{h}}{2}\right)\right]\right]$$

$$+ \left[\left[(1 - \frac{p_l}{2}) \frac{\alpha}{D_h^2} (3(\alpha w_l^2 + (1 - \alpha) w_h^2)) - \frac{p_h}{2} \frac{1 - \alpha}{D_l^2} (3(\alpha w_h^2 + (1 - \alpha) w_l^2)) \right] \times \left[x_h - \alpha w_h^1 - (1 - \alpha) w_l^1 \right] - (1 - \alpha) [p_h (1 - \frac{p_l}{2})] \right] + \left[\left[(1 - \frac{p_l}{2}) \frac{\alpha}{D_h^2} (3(\alpha w_l^2 + (1 - \alpha) w_h^2)) - \frac{p_h}{2} \frac{1 - \alpha}{D_l^2} (3(\alpha w_h^2 + (1 - \alpha) w_l^2)) \right] \times \left[x_h - \alpha w_h^1 - (1 - \alpha) w_l^1 \right] - (1 - \alpha) [p_h (1 - \frac{p_l}{2})] \right] + \left[(1 - \frac{p_l}{2}) \frac{\alpha}{D_h^2} (3(\alpha w_l^2 + (1 - \alpha) w_h^2)) - \frac{p_h}{2} \frac{1 - \alpha}{D_l^2} (3(\alpha w_h^2 + (1 - \alpha) w_l^2)) \right] \times \left[x_h - \alpha w_h^1 - (1 - \alpha) w_l^1 \right] - (1 - \alpha) [p_h (1 - \frac{p_l}{2})] \right]$$

= 0

Firm 1 profits with respect to w_h^1

$$\left[\left[\left(1-\frac{p_{h}}{2}\right)\frac{\alpha}{D_{l}^{2}}\left(3(\alpha w_{h}^{2}+(1-\alpha)w_{l}^{2})\right)-\frac{p_{l}}{2}\frac{(1-\alpha)}{D_{h}^{2}}\left(3(\alpha w_{l}^{2}+(1-\alpha)w_{h}^{2})\right)\right]\times\left[x_{l}-\alpha w_{l}^{1}-(1-\alpha)w_{h}^{1}\right]-(1-\alpha)\left[p_{l}\left(1-\frac{p_{h}}{2}\right)\right]$$

$$+ \left[\left[(1 - \frac{p_l}{2}) \frac{(1 - \alpha)}{D_h^2} (3(\alpha w_l^2 + (1 - \alpha) w_h^2)) - \frac{p_h}{2} \frac{\alpha}{D_l^2} (3(\alpha w_h^2 + (1 - \alpha) w_l^2)) \right] \times \left[x_h - \alpha w_h^1 - (1 - \alpha) w_l^1 \right] - \alpha \left[p_h (1 - \frac{p_l}{2}) \right] \right]$$

= 0

Firm 2 profits with respect to w_L^2

$$\begin{split} \left[\left[\frac{(1+p_h)(1-\alpha)}{2D_l^2} (3(\alpha w_h^1 + (1-\alpha)w_l^1)) - \frac{\alpha(1-p_l)}{2D_h^2} (3(\alpha w_l^1 + (1-\alpha)w_h^1)) \right] \times \left[x_l - \alpha w_l^2 - (1-\alpha)w_h^2 \right] \right] \\ - \left[\alpha \frac{(1-p_l)(1+p_h)}{2} \right] + \end{split}$$

$$\begin{split} \left[\left[\frac{\alpha(1+p_l)}{2D_h^2} (3(\alpha w_l^1 + (1-\alpha)w_h^1)) - \frac{(1-p_h)(1-\alpha)}{2D_l^2} (3(\alpha w_h^1 + (1-\alpha)w_l^1)) \right] \times \left[x_h - \alpha w_h^2 - (1-\alpha)w_l^2 \right] \\ - (1-\alpha) \left[\frac{(1-p_h)(1+p_l)}{2} \right] \right] \end{split}$$

Firm 2 profits with respect to w_h^2

$$\begin{split} \left[\left[\frac{\alpha(1+p_h)}{2D_l^2} (3(\alpha w_h^1 + (1-\alpha)w_l^1)) - \frac{(1-\alpha)(1-p_l)}{2D_h^2} (3(\alpha w_l^1 + (1-\alpha)w_h^1)) \right] \times \left[x_l - \alpha w_l^2 - (1-\alpha)w_h^2 \right] \\ - (1-\alpha) \left[\frac{(1-p_l)(1+p_h)}{2} \right] \right] + \end{split}$$

$$\left[\left[\frac{(1-\alpha)(1+p_l)}{2D_h^2}(3(\alpha w_l^1+(1-\alpha)w_h^1))-\frac{\alpha(1-p_h)}{2D_l^2}(3(\alpha w_h^1+(1-\alpha)w_l^1))\right]\times[x_h-\alpha w_h^2-(1-\alpha)w_l^2]\right]$$

$$-\alpha\left[\frac{(1-\rho_h)(1+\rho_l)}{2}\right]$$

Conclusion

- We study inter-occupation heterogeneity in wage transparency in the U.S. and empirically find that:
 - 1. High-skill jobs are less transparent than low-skill jobs
 - 2. Transparency increases with market power concentration
- Future objectives for the model:
 - 1. Introduce adverse selection: Worker type x_h does not accept a job because his outside option is more valuable.
 - 2. Allow firms to opt for bargaining: Firms can resolve the adverse selection problem by opting not to post wages and bargain with a worker instead.
 - Not posting wages comes at a cost: Difficult to attract workers
 - But it allows you to identify worker types perfectly

References

- Burdett, Kenneth and Dale T Mortensen, "Wage differentials, employer size, and unemployment," *International Economic Review*, 1998, pp. 257–273.
- Cheremukhin, Anton and Paulina Restrepo-Echavarria, "Wage Setting Under Targeted Search," FRB St. Louis Working Paper, 2020, (2020-41).
- **Cullen, Zoë B and Bobak Pakzad-Hurson**, "Equilibrium effects of pay transparency," *Econometrica*, 2023, *91* (3), 765–802.
- **Diamond, Peter A**, "Wage determination and efficiency in search equilibrium," *The Review of Economic Studies*, 1982, 49 (2), 217–227.
- **Doniger, Cynthia L**, "Wage dispersion with heterogeneous wage contracts," *Review of Economic Dynamics*, 2023, *51*, 138–160.

- **Flinn, Christopher and Joseph Mullins**, "Firms' choices of wage-setting protocols," Technical Report, Discussion paper, New York University 2021.
- McCall, John Joseph, "Economics of information and job search," *The Quarterly Journal of Economics*, 1970, 84 (1), 113–126.
- Michelacci, Claudio and Javier Suarez, "Incomplete wage posting," *Journal of Political Economy*, 2006, *114* (6), 1098–1123.
- Moen, Espen R, "Competitive search equilibrium," *Journal of Political Economy*, 1997, 105 (2), 385–411.
- Montgomery, James D, "Equilibrium wage dispersion and interindustry wage differentials," *The Quarterly Journal of Economics*, 1991, 106 (1), 163–179.
- **Mortensen, Dale T**, "The matching process as a noncooperative bargaining game," in "The economics of information and uncertainty," University of Chicago Press, 1982, pp. 233–258.

- **Pissarides, Christopher A**, "Short-run equilibrium dynamics of unemployment, vacancies, and real wages," *The American Economic Review*, 1985, 75 (4), 676–690.
- Rabinovich, Stanislav, Brenda Samaniego de la Parra, and Ronald P Wolthoff, "Wage Setting Protocols and Labor Market Conditions: Theory and Evidence," *Available at SSRN 4890921*. 2023.

Appendix

Appendix: Occupation size distribution

Appendix: Firm size distribution

Appendix: Data cleaning

- 1. Remove all internships
- 2. Remove all postings with SOC-3 codes 55-900 (military) and 99-900 (unclassified)
- 3. Remove all postings published exclusively to craigslist.org
- 4. Reclassified postings with imputed wages
- 5. Reclassified postings whose remuneration structure follows a pay schedule
- 6. Remove postings with irrecoverable firm names

Appendix: Lightcast firm names

Appendix: Industry-level wage information shares (2018 - 2020)

Appendix: Education codes

- High school or GED: 0
- Associate's degree: 1
- Bachelor's degree: 2
- Master's degree: 3
- PhD or professional degree: 4

High skill jobs have greater within-occupation wage dispersion

Wage offer vs. realized wages

